
COMP2111 Week 2
Term 1, 2024

Discrete Mathematics Recap II

1



Summary of topics

Sets
Formal languages
Relations
Functions
Propositional Logic

2



Functions

A function, f : S → T , is a binary relation f ⊆ S × T such that
for all s ∈ S there is exactly one t ∈ T such that (s, t) ∈ f .

We write f (s) for the unique element related to s.

A partial function f : S 9 T is a binary relation f ⊆ S × T such
that for all s ∈ S there is at most one t ∈ T such that (s, t) ∈ f .
That is, it is a function f : S ′ −→ T for S ′ ⊆ S

3



Functions

A function f : S −→ T is a pairing of the sets: it means that f
assigns to every element s ∈ S a single element t ∈ T . To
emphasise where a specific element is sent, we can write f : x 7→ y ,
which means the same as f (x) = y

Symbol
S domain of f dom(f ) (inputs)
T co-domain of f codom(f ) (possible outputs)
f (S) image of f im(f ) (actual outputs)
= { f (x) : x ∈ dom(f ) }

4



Important!
The domain and co-domain are critical aspects of a function’s
definition.

f : N → Z given by f : x 7→ x2

and
g : N → N given by g : x 7→ x2

are different functions even though they have the same behaviour!

5



Composition of Functions

Composition of functions is described as

g ◦ f : x 7→ g(f (x)), requiring im(f ) ⊆ dom(g)

Composition is associative

h ◦ (g ◦ f ) = (h ◦ g) ◦ f , can write h ◦ g ◦ f

6



Composition of Functions

If a function maps a set into itself, i.e. when dom(f ) = codom(f )
(and thus im(f ) ⊆ dom(f )), the function can be composed with
itself — iterated

f ◦ f , f ◦ f ◦ f , . . . , also written f 2, f 3, . . .

Identity function on S

IdS(x) = x , x ∈ S;dom(i) = codom(i) = im(i) = S

For g : S −→ T g ◦ IdS = g , IdT ◦ g = g

7



Extension: Composition of Binary Relations

If R1 ⊆ S ×T and R2 ⊆ T ×U then the composition of R1 and R2

is the relation:

R1;R2 := {(a, c) : there is a b ∈ T such that
(a, b) ∈ R1 and (b, c) ∈ R2}.

Note that if f : S → T and g : T → S are functions then
f ; g = g ◦ f .

8



Properties of Functions
A function is called surjective or onto if every element of the
codomain is mapped to by at least one x in the domain, i.e.

im(f ) = codom(f )

Examples (of surjective functions)
f : N −→ N with f (x) = x
Floor, ceiling

Examples (of non-surjective functions)
f : N −→ N with f (x) = x2

f : {a, . . . , z}∗ −→ {a, . . . , z}∗ with f (ω) = aωe

9



Injective Functions
A function is called injective or 1–1 (one-to-one) if different
inputs give different outputs, i.e.

f (x) = f (y) → x = y

Examples (of functions that are injective)
f : N −→ N with f (x) 7→ x
set complement (for a fixed universe)

Examples (of functions that are not injective)
absolute value, floor, ceiling
length of a word

Function is bijective if it is both surjective and injective.
10



Converse of a function

Question
f← is a relation; when is it a function?

11



Question
f← is a relation; when is it a function?

Answer
When f is a bijection.

12



Inverse Functions

Inverse function — f −1 : T −→ S;
for a given f : S −→ T exists exactly
when f is bijective.

Image of a subdomain A under a function

f (A) = { f (s) : s ∈ A } = { t ∈ T : t = f (s) for some s ∈ A }

Inverse image — f←(B) = { s ∈ S : f (s) ∈ B } ⊆ S;
it is defined for every f (recall: converse of a relation)

If f −1 exists then f←(B) = f −1(B)

f (∅) = ∅, f←(∅) = ∅

13



Summary of topics

Sets
Formal languages
Relations
Functions
Propositional Logic

14



Propositions

A sentence of a natural language (like English, Cantonese,
Warlpiri) is declarative, or a proposition, if it can be meaningfully
be said to be either true or false.
Examples

Richard Nixon was president of Ecuador.
A square root of 16 is 4.
Euclid’s program gets stuck in an infinite loop if you input 0.
Whatever list of numbers you give as input to this program, it
outputs the same list but in increasing order.
xn + yn = zn has no nontrivial integer solutions for n > 2.
3 divides 24.

15



The following are not declarative sentences:
Wingardium leviosa.
For Pete’s sake, take out the garbage!
Are elephants made of cardboard?
Please waive the prerequisites for this subject for me.

16



Declarative sentences in natural languages can be compound
sentences, built out of other sentences.
Propositional Logic is a formal representation of some
constructions for which the truth value of the compound sentence
can be determined from the truth value of its components.

My pants are on fire and my hat is soaked.
Nixon won the debate or Nixon applied a coat of Lazy Shave.
It is not the case that this program always halts.

17



Not all constructions of natural language are truth-functional:
Carroll believes that Santa Claus is real.
Johannes knows Santa Claus is real.
This program always halts because it contains no loops.
The disk crashed after I saved my file.

NB
Various modal logics extend classical propositional logic to cover
these.

18



The Three Basic Connectives of Propositional Logic

symbol text
∧ “and”, “but”, “;”, “:”
∨ “or”, “either …or …”
¬ “not”, “it is not the case that”

Truth tables:

A B A ∧ B
F F F
F T F
T F F
T T T

A B A ∨ B
F F F
F T T
T F T
T T T

A ¬ A
F T
T F

19



Applications I: Program Logic

Example
if x > 0 or (x <= 0 and y > 100):

Let p def
= (x > 0) and q def

= (y > 100)

p ∨ (¬p ∧ q)

p q ¬p ¬p ∧ q p ∨ (¬p ∧ q)
F F T F F
F T T T T
T F F F T
T T F F T

This is equivalent to p ∨ q. Hence the code can be simplified to

if x > 0 or y > 100:

20



Now consider the following constructions:
if A then B
A only if B
B if A
A implies B
it follows from A that B
whenever A, B
A is a sufficient condition for B
B is a necessary condition for A

Each has the property that if the whole statement is true, and A is
true, then B is true.

21



We can approximate the English meaning of these by
“not ( A and not B)”, written A → B which has the following
truth table:

A B A → B
F F T
F T T
T F F
T T T

While only an approximation to the English, 100+ years of
experience have shown this to be adequate for capturing
mathematical reasoning.
(Moral: mathematical reasoning does not need all the features of
English.)

22



“If it rains, I bring an umbrella”

Conversational implication (in informal English):
☔☺ ☀☺

Material implication (in formal logic):
☔☺ ☀☺ ☀☂😐

Conversational implication also has a whiff of causality.
“If I don’t bring an umbrella, it doesn’t rain”

In formal logic, this new sentence is equivalent to “If it rains...”.
In English, it suggests that my behaviour changes the weather, not
that the weather changes my behaviour.

23



“If it rains, I bring an umbrella”

Conversational implication (in informal English):
☔☺ ☀☺

Material implication (in formal logic):
☔☺ ☀☺ ☀☂😐

Conversational implication also has a whiff of causality.
“If I don’t bring an umbrella, it doesn’t rain”

In formal logic, this new sentence is equivalent to “If it rains...”.
In English, it suggests that my behaviour changes the weather, not
that the weather changes my behaviour.

24



Examples
p = “you get an HD on your final exam”
q = “you do every exercise in the book”
r = “you get an HD in the course”

Translate into logical notation:

(a) You get an HD in the course although you do not do every
exercise in the book.

(c) To get an HD in the course, you must get an HD on the exam.

(d) You get an HD on your exam, but you don’t do every exercise
in this book; nevertheless, you get an HD in this course.

25



Examples
p = “you get an HD on your final exam”
q = “you do every exercise in the book”
r = “you get an HD in the course”

Translate into logical notation:

(a) You get an HD in the course although you do not do every
exercise in the book.

r ∧ ¬q

(c) To get an HD in the course, you must get an HD on the exam.
r → p

(d) You get an HD on your exam, but you don’t do every exercise
in this book; nevertheless, you get an HD in this course. p ∧¬q ∧ r

26



Examples
p = “you get an HD on your final exam”
q = “you do every exercise in the book”
r = “you get an HD in the course”

Translate into logical notation:

(a) You get an HD in the course although you do not do every
exercise in the book. r ∧ ¬q

(c) To get an HD in the course, you must get an HD on the exam.

r → p

(d) You get an HD on your exam, but you don’t do every exercise
in this book; nevertheless, you get an HD in this course. p ∧¬q ∧ r

27



Examples
p = “you get an HD on your final exam”
q = “you do every exercise in the book”
r = “you get an HD in the course”

Translate into logical notation:

(a) You get an HD in the course although you do not do every
exercise in the book. r ∧ ¬q

(c) To get an HD in the course, you must get an HD on the exam.
r → p

(d) You get an HD on your exam, but you don’t do every exercise
in this book; nevertheless, you get an HD in this course.

p ∧¬q ∧ r

28



Examples
p = “you get an HD on your final exam”
q = “you do every exercise in the book”
r = “you get an HD in the course”

Translate into logical notation:

(a) You get an HD in the course although you do not do every
exercise in the book. r ∧ ¬q

(c) To get an HD in the course, you must get an HD on the exam.
r → p

(d) You get an HD on your exam, but you don’t do every exercise
in this book; nevertheless, you get an HD in this course. p ∧¬q ∧ r

29



Unless

A unless B can be approximated as ¬B → A

E.g.
I go swimming unless it rains = If it is not raining then I go
swimming.
Correctness of the translation is perhaps easier to see in:
I don’t go swimming unless the sun shines = If the sun does not
shine then I don’t go swimming.

Note that “I go swimming unless it rains, but sometimes I swim
even though it is raining” makes sense, so the translation of “A
unless B” should not imply B → ¬A.

30



If and only if

A if, and only if, B is written A ↔ B

I will have an entree if and only if I won’t have desert.
= If I have desert I will not have an entree and vice versa.

It has the following truth table:

A B A ↔ B
F F T
F T F
T F F
T T T

Same as (A → B) ∧ (B → A)

31



A Propositional formula is made up of propositional variables
and logical connectives (∧,∨,¬,→,↔).

A truth assignment (aka valuation, aka state) assigns T or F to
each propositional variable, and, using the logical connectives,
gives a truth value to all propsitional formulas.

32



Logical Equivalence

Two formulas φ, ψ are logically equivalent, denoted φ ≡ ψ if they
have the same truth value for all truth valuations.

Application: If φ and ψ are two formulae such that φ ≡ ψ, then
the digital circuits corresponding to φ and ψ compute the same
function. Thus, proving equivalence of formulas can be used to
optimise circuits.

33



Some Well-Known Equivalences

Excluded Middle p ∨ ¬p ≡ >
Contradiction p ∧ ¬p ≡ ⊥

Identity p ∨ ⊥ ≡ p
p ∧ > ≡ p
p ∨ > ≡ >
p ∧ ⊥ ≡ ⊥

Idempotence p ∨ p ≡ p
p ∧ p ≡ p

Double Negation ¬¬p ≡ p
Commutativity p ∨ q ≡ q ∨ p

p ∧ q ≡ q ∧ p

34



Associativity (p ∨ q) ∨ r ≡ p ∨ (q ∨ r)
(p ∧ q) ∧ r ≡ p ∧ (q ∧ r)

Distribution p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)
p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)

De Morgan’s laws ¬(p ∧ q) ≡ ¬p ∨ ¬q
¬(p ∨ q) ≡ ¬p ∧ ¬q

Implication p → q ≡ ¬p ∨ q
p ↔ q ≡ (p → q) ∧ (q → p)

35



Satisfiability of Formulas

A formula is satisfiable, if it evaluates to T for some assignment
of truth values to its basic propositions.

Example
A B ¬(A → B)

F F F
F T F
T F T
T T F

36



Applications II: Constraint Satisfaction Problems

These are problems such as timetabling, activity planning, etc.
Many can be understood as showing that a formula is satisfiable.

Example
You are planning a party, but your friends are a bit touchy about
who will be there.

1 If John comes, he will get very hostile if Sarah is there.
2 Sarah will only come if Kim will be there also.
3 Kim says she will not come unless John does.

Who can you invite without making someone unhappy?

37



Translation to logic: let J ,S,K represent “John (Sarah, Kim)
comes to the party”. Then the constraints are:

1 J → ¬S
2 S → K
3 K → J

Thus, for a successful party to be possible, we want the formula
φ = (J → ¬S) ∧ (S → K) ∧ (K → J) to be satisfiable.
Truth values for J ,S,K making this true are called satisfying
assignments, or models.

38



We figure out where the conjuncts are false, below. (so blank = T)
J K S J → ¬S S → K K → J φ

F F F
F F T F F
F T F F F
F T T F F
T F F
T F T F F F
T T F
T T T F F

Conclusion: a party satisfying the constraints can be held. Invite
nobody, or invite John only, or invite Kim and John.

39



Exercise

Which of the following formulae are always true?

(a) (p ∧ (p → q)) → q

— always true

(b) ((p ∨ q) ∧ ¬p) → ¬q

— not always true

(e) ((p → q) ∨ (q → r)) → (p → r)

— not always true

(f) (p ∧ q) → q

— always true

40



Exercise

Which of the following formulae are always true?

(a) (p ∧ (p → q)) → q — always true

(b) ((p ∨ q) ∧ ¬p) → ¬q — not always true

(e) ((p → q) ∨ (q → r)) → (p → r) — not always true

(f) (p ∧ q) → q — always true

41



Validity, Entailment, Arguments

An argument consists of a set of declarative sentences called
premises and a declarative sentence called the conclusion.

Example
Premises: Frank took the Ford or the Toyota.

If Frank took the Ford he would be late.
Frank is not late.

Conclusion: Frank took the Toyota

42



An argument is valid if the conclusions are true whenever all the
premises are true. Thus: if we believe the premises, we should also
believe the conclusion.
(Note: we don’t care what happens when one of the premises is
false.)
Other ways of saying the same thing:

The conclusion logically follows from the premises.
The conclusion is a logical consequence of the premises.
The premises entail the conclusion.

43



The argument above is valid. The following is invalid:

Example
Premises: Frank took the Ford or the Toyota.

If Frank took the Ford he would be late.
Frank is late.

Conclusion: Frank took the Ford.

44



Validity of arguments in propositional logic is captured as follows:

Let φ1, . . . , φn and φ be formulae of propositional logic. Draw a
truth table with columns for each of φ1, . . . , φn and φ.
The argument with premises φ1, . . . , φn and conclusion φ is valid,
denoted

φ1, . . . , φn |= φ

if for every row of the truth table where φ1, . . . , φn are all true, φ
is true also.

NB: |= is the same thing as V from Week 1.

45



We mark only true locations (blank = F)
Frd Tyta Late Frd ∨ Tyta Frd → Late ¬Late Tyta
F F F T T
F F T T
F T F T T T T
F T T T T T
T F F T T
T F T T T
T T F T T T
T T T T T T

This shows Frd ∨ Tyta, Frd → Late, ¬Late |= Tyta

46



The following row shows Frd ∨ Tyta, Frd → Late, Late 6|= Frd
Frd Tyta Late Frd ∨ Tyta Frd → Late Late Frd
F T T T T T F

47



Applications III:
Reasoning About Requirements/Specifications

Suppose a set of English language requirements R for a
software/hardware system can be formalised by a set of formulae
{φ1, . . . φn}.
Suppose C is a statement formalised by a formula ψ. Then

1 The requirements cannot be implemented if φ1 ∧ . . . ∧ φn is
not satisfiable.

2 If φ1, . . . φn |= ψ then every correct implementation of the
requirements R will be such that C is always true in the
resulting system.

3 If φ1, . . . φn−1 |= φn, then the condition φn of the specification
is redundant and need not be stated in the specification.

48



Example

Requirements R: An alarm system for a house is to operate as
follows. The alarm should not sound unless the system has been
armed or there is a fire. If the system has been armed and a door
is disturbed, the alarm should ring. Irrespective of whether the
system has been armed, the alarm should go off when there is a
fire.
Conclusion C: If the alarm is ringing and there is no fire, then the
system must have been armed.
Questions

1 Will every system correctly implementing requirements R
satisfy C?

2 Is the final sentence of the requirements redundant?

49



Expressing the requirements as formulas of propositional logic,
with

S = the alarm sounds = the alarm rings
A = the system is armed
D = a door is disturbed
F = there is a fire

we get
Requirements:

1 S → (A ∨ F )
2 (A ∧ D) → S
3 F → S

Conclusion: (S ∧ ¬F ) → A

50



Our two questions then correspond to
1 Does S → (A∨ F ), (A∧D) → S, F → S |= (S ∧¬F ) → A ?
2 Does S → (A ∨ F ), (A ∧ D) → S |= F → S ?

51



Validity of Formulas

A formula φ is valid, or a tautology, denoted |= φ, if it evaluates
to T for all assignments of truth values to its basic propositions.

Example
A B (A → B) → (¬B → ¬A)
F F T
F T T
T F T
T T T

52



Validity, Equivalence and Entailment

Theorem
The following are equivalent:

φ1, . . . φn |= ψ

|= (φ1 ∧ . . . ∧ φn) → ψ

|= φ1 → (φ2 → . . . (φn → ψ) . . .)

Theorem
φ ≡ ψ if and only if |= φ↔ ψ

53



Beyond propositions

Entailment captures a form of logical reasoning, but it cannot
handle relatively simple logical arguments like the following:

1 Socrates is a man
2 All men are mortal
3 Therefore Socrates is mortal

We need to add expressiveness to propositional logic so that we
can capture notions such as the relation between man and men in
the first two statements; and the quantified statement “all men”.

NB
Adding expressiveness comes at a cost: it is now more difficult to
determine truth values.

54



Predicates

Predicates are functions that take inputs from a set and return
either true or false – i.e. they are relations. Predicates enable us to
establish relationships between different propositions, such as the
man/men connection between the first and second propositions on
the previous slide, allowing more expressiveness than propositional
logic can give.

55



Quantifiers
Quantifiers allow us to make quantified statements over predicates,
e.g.

“If there exists a satisfying assignment …”
or

“Every natural number greater than 2 …”
The two standard quantifiers are

∀: “for all”, “for any”, “every”
∃: “there exists”, “there is”, “for some”, “at least one”

Example
Goldbach conjecture

∀n ∈ 2N (n > 2 → ∃p, q ∈ N (p, q ∈ Primes ∧ n = p + q))

56



Predicate logic

Predicate (or first-order) logic extends propositional logic by
adding predicates and quantifiers.

More on predicate logic in Weeks 1 and 5.

57



Summary of topics

Sets
Formal languages
Relations
Functions
Propositional Logic

58


